Áp dụng Cauchy ta có:
$P=\dfrac{x}{y}+\sqrt{1+\dfrac{y}{z}}+\sqrt[3]{1+\dfrac{z}{x}}$
\geq $\dfrac{x}{y}+\sqrt{2}\sqrt[4]{\dfrac{y}{z}}+\sqrt[3]{2}\sqrt[6]{\dfrac{y}{z}}$
=$\dfrac{1}{2\sqrt{2}}(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}})+(1-\dfrac{1}{2\sqrt{2}})\dfrac{x}{y}+(\sqrt[3]{2}-\dfrac{6}{2\sqrt{2}})\sqrt[6]{\dfrac{z}{x}}$ (1)
Áp dụng Cauchy cho 11 số được:
$\dfrac{1}{2\sqrt{2}}(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}})$
\geq $\dfrac{11}{2\sqrt{2}}\sqrt[11]{\dfrac{x}{y}\dfrac{y}{z}\dfrac{z}{x}}=\dfrac{11}{2\sqrt{2}}$ (2)
Mà $x=max{x,y,z}$ nên $\dfrac{x}{y}$ \geq 1 \geq $\dfrac{z}{x}$
và $1-\dfrac{1}{2\sqrt{2}}>0>\sqrt[3]{2}-\dfrac{6}{2\sqrt{2}}$
nên từ (1) và (2) ta có
P \geq $\dfrac{11}{2\sqrt{2}}+(1-\dfrac{1}{2\sqrt{2}})+(\sqrt[3]{2}-\dfrac{6}{2\sqrt{2}})=1+\sqrt{2}+\sqrt[3]{2}$
$P_{min}=1+\sqrt{2}+\sqrt[3]{2}$ \Leftrightarrow $x=y=z$