tìm giá trị nhỏ nhất của biểu thức

H

hthtb22

$$P=\dfrac{x^2(x-1)+y^2(y-1)}{(x-1)(y-1)}=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1} $$

$$P \ge \dfrac{(x+y)^2}{x+y-2}=x+y-2+\dfrac{4}{x+y-2}+4 \ge 8$$
 
P

phannhungockhanh

$\int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {\left( {t{g^2}x - tgx} \right){e^{ - x}}dx = \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {t{g^2}x{e^{ - x}}dx - } } \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {tgx{e^{ - x}}dx = I - J} $$
Dùng tích phân từng phần với số hạng thứ hai ta được:
$$J = \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {tgx{e^{ - x}}dx = - } \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {tgxd\left( {{e^{ - x}}} \right)} = \left. { - tg{e^{ - x}}} \right|_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} + \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {{e^{ - x}}\left( {1 + t{g^2}x} \right)} dx$$
$$ = \left. { - tg{e^{ - x}}} \right|_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} + \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {{e^{ - x}}dx} + \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {t{g^2}x{e^{ - x}}dx} = \left. { - tg{e^{ - x}}} \right|_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} + \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {{e^{ - x}}dx} + I$$
Suy ra: $$\int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {\left( {t{g^2}x - tgx} \right){e^{ - x}}dx = } \left. {tg{e^{ - x}}} \right|_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} - \int\limits_{\frac{{3\pi }}{4}}^{\frac{\pi }{4}} {{e^{ - x}}dx} = ...$
 
Top Bottom