Cách khác: $A = x+\sqrt{3-x}$
Đặt $\sqrt{3-x} = t \ge 0$
$\rightarrow 3-x = t^2 \rightarrow x = 3-t^2$
$\rightarrow A = 3-t^2+t = -(t-\dfrac{1}{2})^2+\dfrac{13}{4} \le \dfrac{13}{4}$
Vậy Max $A = \dfrac{13}{4}$ khi $t = \dfrac{1}{2} \rightarrow x = \dfrac{11}{4}$