Tìm giá trị của biểu thức
Sara Silvers Học sinh mới Thành viên 24 Tháng chín 2017 5 0 16 19 Hà Nội 23 Tháng mười 2018 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
hdiemht Cựu Mod Toán Thành viên 11 Tháng ba 2018 1,813 4,028 506 21 Quảng Trị $Loading....$ 30 Tháng mười 2018 #2 Sara Silvers said: View attachment 85192 Bấm để xem đầy đủ nội dung ... [tex]\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}=\frac{1}{(b+c)^2-2bc-a^2}+\frac{1}{(a+c)^2-2ac-b^2}+\frac{1}{(a+b)^2-2bc-c^2}=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0[/tex] Reactions: phuongdaitt1
Sara Silvers said: View attachment 85192 Bấm để xem đầy đủ nội dung ... [tex]\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}=\frac{1}{(b+c)^2-2bc-a^2}+\frac{1}{(a+c)^2-2ac-b^2}+\frac{1}{(a+b)^2-2bc-c^2}=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0[/tex]