Toán Tìm điều kiện xác định+Rút gọn

God Hell

Học sinh
Thành viên
18 Tháng bảy 2017
59
42
36
21
Hà Nội
Rút gọn:
$a)\sqrt{6+2\sqrt{5}}-\sqrt{21-4\sqrt{5}}
\\=\sqrt{5+2\sqrt{5}+1}-\sqrt{20-4\sqrt{5}+1}
\\=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(2\sqrt{5}-1)^2}
\\=\sqrt{5}+1-2\sqrt{5}+1
\\=2-\sqrt{5}
\\b)2\sqrt{8-2\sqrt{7}}+\sqrt{64+6\sqrt{7}}
\\=2\sqrt{7-2\sqrt{7}+1}+\sqrt{63+6\sqrt{7}+1}
\\=2\sqrt{(\sqrt{7}-1)^2}+\sqrt{(3\sqrt{7}+1)^2}
\\=2\sqrt{7}-2+3\sqrt{7}+1
\\=5\sqrt{7}-1
\\c)\sqrt{27-8\sqrt{11}}+\sqrt{(-3)^2}-2\sqrt{(-5)^2}
\\=\sqrt{16-8\sqrt{11}+11}+|-3|-2|-5|
\\=\sqrt{(4-\sqrt{11})^2}+3-2.5
\\=4-\sqrt{11}+3-10
\\=-3-\sqrt{11}
\\d)\sqrt{x^2+4x+4}-5-3x
\\=\sqrt{(x+2)^2}-5-3x
\\=|x+2|-5-3x
\\=-x-2-5-3x
\\=-4x-7
\\e)a-2\sqrt{4a^2-4a+1}
\\=a-2\sqrt{(2a-1)^2}
\\=a-2(2a-1)
\\=a-4a+2
\\=2-3a$
Tìm ĐKXĐ:
a) bt có nghĩa $\Leftrightarrow \dfrac 23x-\dfrac15\geq 0\Leftrightarrow \dfrac 23x\geq \dfrac15\Leftrightarrow x\geq \dfrac 3{10}$
b) bt có nghĩa $\Leftrightarrow \dfrac{1+x}{2x-3}\geq 0\Leftrightarrow \left\{\begin{matrix}1+x\geq 0\\ 2x-3>0\end{matrix}\right. \ or \ \left\{\begin{matrix}1+x\leq 0\\ 2x-3<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x\geq -1\\ x>\dfrac 32\end{matrix}\right. \ or \ \left\{\begin{matrix}x\leq -1\\ x<\dfrac 32\end{matrix}\right.\Leftrightarrow x>\dfrac 32 \ or \ x\leq -1$
c) bt có nghĩa $\Leftrightarrow \left\{\begin{matrix}3x-5\geq 0\\ \dfrac 2{x-4}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x\geq \dfrac 53\\ x>4\end{matrix}\right.\Leftrightarrow x>4$
d) bt có nghĩa $\Leftrightarrow x\neq 0$ (vì $\left | \dfrac1x+2x \right |\geq 0$)
e) bt có nghĩa $\Leftrightarrow \left\{\begin{matrix}-3x\geq 0\\ 49-x^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x\leq 0\\
-7<x<7\end{matrix}\right.\Leftrightarrow -7<x\leq 0$
 

Blue Plus

Cựu TMod Toán|Quán quân WC18
Thành viên
TV ấn tượng nhất 2017
7 Tháng tám 2017
4,506
10,437
1,114
Khánh Hòa
$\color{Blue}{\text{Bỏ học}}$
[tex]\dpi{100} \sqrt{6+2\sqrt{5}}-\sqrt{21-4\sqrt{5}}\\=\sqrt{5+2.\sqrt{5}.1+1}-\sqrt{20-2.2\sqrt{5}.1}\\=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(2\sqrt{5}-1)^2}\\=|\sqrt{5}+1|-|2\sqrt{5}-1|\\=\sqrt{5}+1-2\sqrt{5}+1\\=2-\sqrt{5}[/tex]
[tex]\dpi{100} 2\sqrt{8-2\sqrt{7}}+\sqrt{64+6\sqrt{7}}\\=2\sqrt{7-2.\sqrt{7}.1+1}+\sqrt{63+2.3\sqrt{7}+1}\\=2\sqrt{(\sqrt{7}-1)^2}+\sqrt{(3\sqrt{7}+1)^2}\\=2.|\sqrt{7}-1|+|3\sqrt{7}+1|\\=2(\sqrt{7}-1)+3\sqrt{7}+1\\=2\sqrt{7}-2+3\sqrt{7}+1\\=5\sqrt{7}-1[/tex]
K rõ đề câu 3
[tex]\dpi{100} \sqrt{x^2+4x+4}-5-3x\\=\sqrt{(x+2)^2}-5-3x\\=|x+2|-5-3x\\=-x-2-5-3x\\=-7-4x\\=-(7+4x)[/tex]
[tex]\dpi{100} a-2\sqrt{4a^2-4a+1}\\=a-2\sqrt{(2a-1)^2}\\=a-2.|2a-1|\\=a-2.(2a-1)\\=a-4a+2\\=-3a+2[/tex]
 
Top Bottom