[tex]\frac{x^2}{\sqrt{(x+4)(x^2-4x+16)}}+\frac{y^2}{\sqrt{(y+4)(y^2-4y+16)}}+\frac{z^2}{\sqrt{(z+4)(z^2-4z+16)}}\geq \frac{(x+y+z)^2}{\sqrt{(x+4)(x^2-4x+16)}+\sqrt{(y+4)(y^2-4y+16)}+\sqrt{(z+4)(z^2-4z+16)}} \geq \frac{(x+y+z)^2}{\sqrt{(x+y+z+12)(x^2+y^2+z^2-4(x+y+z)+48)}}=\frac{\sqrt{2}(x+y+z)^2}{\sqrt{2(x+y+z+12)(x^2+y^2+z^2-4(x+y+z)+48)}}\geq \frac{2\sqrt{2}(x+y+z)^2}{x^2+y^2+z^2-2(x+y+z)+72}\geq \frac{2\sqrt{2}(x+y+z)^2}{x^2+y^2+z^2-2\sqrt{3(xy+yz+xz)+72}}=\frac{2\sqrt{2}(x+y+z)^2}{x^2+y^2+z^2+5(xy+yz+xz)}\geq \frac{2\sqrt{2}(x+y+z)^2}{2(x+y+z)^2}=\sqrt{2}[/tex]
daaus "=" khi x=y=z=2