tìm cực trị

S

songoku112

D

demon311

2) Ta có: $abc=1$

$3\sqrt[3]{a^2b^2c^2} = 3$
$a^2+b^2+c^2 \ge 3$
Ta có:

$P \ge \dfrac{9}{3(a^2+b^2+c^2)+9} \ge \dfrac{9}{18}=\dfrac{1}{2}$
Vậy,

$Min P=\dfrac{1}{2}$. Dấu bằng xảy ra: $a=b=c=1$
 
T

tranvanhung7997

1, $P = \dfrac{1}{a^2 + b^2 + c^2} + \dfrac{1}{ab + bc + ca} + \dfrac{1}{ab + bc + ca} + \dfrac{3}{ab + bc + ca}$
$\ge \dfrac{9}{a^2 + b^2 + c^2 + 2(ab + bc + ca)} + \dfrac{3}{ab + bc + ca} \ge \dfrac{9}{(a + b + c)^2} + \dfrac{3}{ab + bc + ca}$
Ta có: $a + b + c \le 3 => ab + bc + ca \le \dfrac{(a + b + c)^2}{3} \le 3$
=> $P \ge 1 + 1 = 2$
Dấu = có <=> a = b = c = 1
 
C

congchuaanhsang

1, $\dfrac{1}{a^2+2b^2+3}$\leq$\dfrac{1}{2(ab+b+1)}$ (Cauchy)

Tương tự có đpcm

Lưu ý $\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}=1$ với $abc=1$
 
H

hoang_duythanh

Câu 2 :
có $a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2$\geq$2ab+2b+1$
tương tự => P\leq $\frac{1}{2}(\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+
\frac{1}{bc+c+1}$
Có:$\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+\frac{1}{bc+c+1}
<=>\frac{1}{ab+b+1}+\frac{1}{1+\frac{1}{b}+a}+
\frac{1}{\frac{1}{a}+\frac{1}{ab}+1} =\frac{1}{ab+b+1}+\frac{b}{ab+b+1}+\frac{ab}{ab+b+1}=1$(vì abc=1)
=>P \leq $\frac{1}{2}$
dấu "=" khi a=b=c=1
 
Top Bottom