Đặt [tex]x_n=\sqrt{1+3u_n}=>u_n=\frac{x_n^2-1}{3} =>\frac{x_{n+1}^2-1}{3}=9\frac{x_n^2-1}{3}+4x_n+4<=>x_{n+1}^2=(3x_n+2)^2<=>x_{n+1}=(3x_n+2)<=>x_{n+1}+1=3(x_n+1)[/tex]
dãy CSN công bội q=3. Đặt [tex]v_n=x_n+1=>v_1=\frac{9}{4}[/tex]
Vậy [tex]v_n=\frac{9}{4}3^{n-1}=>U_n=\frac{(\frac{9}{4}3^{n-1}-1)^2-1}{3.}[/tex]