Toán 9 Tìm các số thực x,y TMĐK: [tex]\sqrt{2013}( x\sqrt{y-2013}+y\sqrt{x-2013})=xy[/tex]

Thái Vĩnh Đạt

Học sinh chăm học
Thành viên
6 Tháng tám 2017
592
263
134
20
Phú Yên
THCS Huỳnh Thúc Kháng
Tìm các số thực x,y TMĐK:
[tex]\sqrt{2013}( x\sqrt{y-2013}+y\sqrt{x-2013})=xy[/tex]
Ta c/m: với mọi [tex]a,b\geq c[/tex], ta có [tex]a\sqrt{b-c}+b\sqrt{a-c}\leq \frac{ab}{\sqrt{c}}[/tex]
Thật vậy: Ta có [tex]\frac{a\sqrt{b-c}+b\sqrt{a-c}}{\frac{ab}{\sqrt{c}}}=\frac{a\sqrt{c(b-c)}+b\sqrt{c(a-c)}}{ab}[/tex]
[tex]=\frac{\sqrt{c(b-c)}}{b}+\frac{\sqrt{c(a-c)}}{a}[/tex]
[tex]\leq \frac{\frac{c+b-c}{2}}{b}+\frac{\frac{c+a-c}{2}}{a}[/tex] (AM-GM)
[tex]=\frac{b}{2b}+\frac{a}{2a}=\frac{1}{2}+\frac{1}{2}=1[/tex]

Do đó [tex]a\sqrt{b-c}+b\sqrt{a-c}\leq \frac{ab}{\sqrt{c}}[/tex]
Dấu = xảy ra <=>a=b=2c
Áp dụng, ta có[tex]x\sqrt{y-2013}+y\sqrt{x-2013}\leq \frac{xy}{\sqrt{2013}}[/tex]
Mà [tex]x\sqrt{y-2013}+y\sqrt{x-2013}= \frac{xy}{\sqrt{2013}}[/tex]
Vậy [tex]x=y=2.2013=4026[/tex]
 
  • Like
Reactions: Hoàng Vũ Nghị
Top Bottom