Tìm các giá trị của m

U

unknown_0

Last edited by a moderator:
G

girlbuon10594

[TEX]x^2+(m - 1)x+5m-6=0[/TEX]

Để phương trình trên có 2 nghiệm phân biệt [TEX]x_1; x_2[/TEX]
\Leftrightarrow [TEX]\large\Delta > 0[/TEX]
\Leftrightarrow [TEX]m^2-22m+25>0[/TEX]
\Leftrightarrow [TEX]m \in (-\infty; 11-4\sqrt{6}) \cup (11+4\sqrt{6}; +\infty)[/TEX]

Với tập hợp m đó, 2 nghiệm của ptr sẽ là:
[TEX]x_1=\frac{(1-m)+\sqrt{\large\Delta}}{2}[/TEX]
[TEX]x_2=\frac{(1-m)-\sqrt{\large\Delta}}{2}[/TEX]

Đến đây, thay vào [TEX]4x_1+3x_2=1[/TEX]

Ta sẽ được ptr là: [TEX]\sqrt{\large\Delta}=5-7m[/TEX]

Đến đây giải được rồi ha:)>-
 
N

nguyenkhacthi

[TEX]x^2+(m - 1)x+5m-6=0[/TEX]

Để phương trình trên có 2 nghiệm phân biệt [TEX]x_1; x_2[/TEX]
\Leftrightarrow [TEX]\large\Delta > 0[/TEX]
\Leftrightarrow [TEX]m^2-22m+25>0[/TEX]
\Leftrightarrow [TEX]m \in (-\infty; 11-4\sqrt{6}) \cup (11+4\sqrt{6}; +\infty)[/TEX]

Với tập hợp m đó, 2 nghiệm của ptr sẽ là:
[TEX]x_1=\frac{(1-m)+\sqrt{\large\Delta}}{2}[/TEX]
[TEX]x_2=\frac{(1-m)-\sqrt{\large\Delta}}{2}[/TEX]

Đến đây, thay vào [TEX]4x_1+3x_2=1[/TEX]

Ta sẽ được ptr là: [TEX]\sqrt{\large\Delta}=5-7m[/TEX]

Đến đây giải được rồi ha:)>-

@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-@};-
 
H

huy266

Thực ra có thể làm cách đơn giản hơn 1 chút.
Để phương trình trên có 2 nghiệm phân biệt [TEX]x_1; x_2[/TEX]
\Leftrightarrow [TEX]\large\Delta > 0[/TEX]
\Leftrightarrow [TEX]m^2-22m+25>0[/TEX]
\Leftrightarrow [TEX]m \in (-\infty; 11-4\sqrt{6}) \cup (11+4\sqrt{6}; +\infty)[/TEX]
Khi đó theo định lý viet ta có hệ sau:
[tex]\left\{\begin{matrix} &4x_{1}+3x_{2}=1 \\ & x_{1}+x_{2}=m-1\\ & x_{1}x_{2}=5m-6\\ & \end{matrix}\right.[/tex]
Từ 2 pt đầu sẽ tính được
[TEX]x_1; x_2[/TEX] theo m. Thay vào pt 3 sẽ có pt bậc 2 của m.Giải và so sánh điều kiện
 
Top Bottom