You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser.
Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
1. pt $\Leftrightarrow 2\sin (2x + \dfrac{\pi}6) + 2\sin \dfrac{\pi}2 = a^2 + \sqrt 3 \sin 2x - \cos 2x$
$\Leftrightarrow \sqrt 3 \sin 2x + \cos 2x + 2 = a^2 + \sqrt 3 \sin 2x - \cos 2x$
$\Leftrightarrow 2\cos 2x = a^2 - 2$.
pt có nghiệm $\Leftrightarrow |a^2 - 2| \leqslant 2 \Leftrightarrow -\sqrt 3 \leqslant x \leqslant \sqrt 3$.
2. ĐK: $\cos x \ne 0; \cos 2x \ne 0; \tan^2 x \ne 1$.
pt $\Leftrightarrow \dfrac{2a^2}{1 - \dfrac{\sin^2 x}{\cos^2 x}} = \dfrac{2\sin^2 x + 2a^2 - 4}{\cos 2x}$
$\Leftrightarrow \dfrac{a^2 (2\cos^2 x - 1) + a^2}{cos^2 x - \sin^2 x} = \dfrac{2\sin^2 x - 1 + 2a^2 - 3}{\cos 2x}$
$\Leftrightarrow \dfrac{a^2 \cos 2x + a^2}{\cos 2x} = \dfrac{-\cos 2x + 2a^2 - 3}{\cos 2x}$
$\Leftrightarrow (a^2 + 1)\cos 2x = a^2 - 3$
pt có nghiệm $\Leftrightarrow \left |\dfrac{a^2-3}{a^2+1} \right| \leqslant 1 \Leftrightarrow a \leqslant -1 \vee a \geqslant 1$.
Mà $\begin{cases} \cos x \ne 0 \\ \cos 2x \ne 0 \\ \tan^2 x \ne 1 \end{cases}
\Leftrightarrow \begin{cases} \cos 2x \ne -1 \\ \cos 2x \ne 0 \end{cases}
\Leftrightarrow \begin{cases} a\ne \pm 1 \\ a\ne \pm \sqrt 3 \end{cases}$
--> ................................