Toán 12 tiệm cận của đồ thị hàm số

mâypr0

Học sinh chăm học
Thành viên
29 Tháng tám 2017
472
95
51
TP Hồ Chí Minh
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1) Biết đồ thị hàm số y= [tex]\frac{(2m-n)x^{2}+mx+1}{x^{2}+mx+n-6}[/tex] nhận trục hoành và trục tung làm hai tiệm cận thì p= m+n bằng bao nhiêu
2) Biết đồ thị hàm số y= [tex]\frac{mx+1}{x+3n+1}[/tex] nhận trục hoành và trục tung làm hai tiệm cận thì p= m+m bằng bao nhiêu
3) Cho hàm số y= [tex]\frac{x+2}{x-2}[/tex] có đồ thị (C). Tìm toạ độ M có hoành độ dương thuộc (C) sao cho tổng khoảng cách từ M đến hai tiệm cận nhỏ nhất
4) Cho hàm số y= [tex]\frac{ax^{2}+x-1}{4x^{2}+bx+9}[/tex] có đồ thị (C) (a,b là các hằng số dương và ab=4). Biết rằng (C) có đường tiệm cận ngang y=c và có đúng 1 tiệm cận đứng. Tính tổng T= 3a+b-24c
5) Cho hàm số y= [tex]\frac{(2m+1)x^{2}+3}{\sqrt{x^{4}+1}}[/tex]. Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm A(1;-3)
6) Cho hàm số y= [tex]\frac{2mx-18}{x-m}[/tex] có đồ thị (C). Tìm m để (C) nhận đường thẳng x=3 làm tiệm cận đứng
 

my pen

Học sinh
Thành viên
23 Tháng sáu 2018
100
108
36
Quảng Nam
Nguyễn Trãi
1) Biết đồ thị hàm số y= [tex]\frac{(2m-n)x^{2}+mx+1}{x^{2}+mx+n-6}[/tex] nhận trục hoành và trục tung làm hai tiệm cận thì p= m+n bằng bao nhiêu
2) Biết đồ thị hàm số y= [tex]\frac{mx+1}{x+3n+1}[/tex] nhận trục hoành và trục tung làm hai tiệm cận thì p= m+m bằng bao nhiêu
3) Cho hàm số y= [tex]\frac{x+2}{x-2}[/tex] có đồ thị (C). Tìm toạ độ M có hoành độ dương thuộc (C) sao cho tổng khoảng cách từ M đến hai tiệm cận nhỏ nhất
4) Cho hàm số y= [tex]\frac{ax^{2}+x-1}{4x^{2}+bx+9}[/tex] có đồ thị (C) (a,b là các hằng số dương và ab=4). Biết rằng (C) có đường tiệm cận ngang y=c và có đúng 1 tiệm cận đứng. Tính tổng T= 3a+b-24c
5) Cho hàm số y= [tex]\frac{(2m+1)x^{2}+3}{\sqrt{x^{4}+1}}[/tex]. Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm A(1;-3)
6) Cho hàm số y= [tex]\frac{2mx-18}{x-m}[/tex] có đồ thị (C). Tìm m để (C) nhận đường thẳng x=3 làm tiệm cận đứng
1). có 2m-n=0 và n-6=0
=> n=6, m=3 => p=m+n=9
2). có 3n+1=0 và m=0
=> n=-1/3, m=0 => m+n=-1/3
3). gọi M(a, a+2/a-2) thuộc (C)
có tiệm cận đứng là x=2
=> khoảng cách từ M đến TCĐ là d1:|a-2|
có tiệm cận ngang là y=1
=> khoảng cách từ M đến TCN là d2:|(a+2)/(a-2)-1| =|4/a-2|
khoảng cách tới 2 đg tiệm cận là d=d1+d2=|a-2|+|4/a-2|
áp dụng bất đẳng thức côsi
|a-2|+|4|/|a-2| >= 2 căn|4|
khảng cách nhỏ nhất =4 khi |a-2| =|4|/|a-2|
=> a-2= +- căn|4| => a=4 hoặc a=0
=>M(4,3) hoặc M( 0, -1)
4).
có tiệm cận ngang y=a/4=c
lại có ab=4 => a/4=1/b=c
có đúng 1 TCĐ => 4x^2+bx+9=0 có 1 ng => denta =0
=> b=12, c=1/12, a=1/3
=>T=1
6). hình như ko có m
 
Top Bottom