[tex]\int\limits_{0}^{pi/2} \frac{1}{\((sinx)^2 + 2(cosx)^2 + sin2x)}dx[/tex]
Trình bày 1 cách này
$ I=\int_{0}^{\dfrac{\pi}{2}} \dfrac{dx}{sin^2x+2cos^2x+sin2x} $
$ I=\int_{0}^{\dfrac{\pi}{4}} \dfrac{dx}{sin^2x+2cos^2x+sin2x}+ \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}} \dfrac{dx}{sin^2x+2cos^2x+sin2x} $
$I=I_1+I_2$
tính $I_1$
$ I_1=\int_{0}^{\dfrac{\pi}{4}} \dfrac{dx}{sin^2x+2cos^2x+sin2x} $
$ I_1=\int_{0}^{\dfrac{\pi}{4}} \dfrac{dx}{1+cos^2x+2sinxcosx} $
$ I_1=\int_{0}^{\dfrac{\pi}{4}} \dfrac{dx}{(\dfrac{1}{cos^2x}+1+\dfrac{2sinx}{cosx})cos^2x} $
Đặt $tanx=t$
tính $I_2$
$ I_2=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}} \dfrac{dx}{sin^2x+2cos^2x+sin2x} $
$ I_2=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}} \dfrac{dx}{2-sin^2x+2sinxcosx} $
$ I_2=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}} \dfrac{dx}{(\dfrac{2}{sin^2x}-1+\dfrac{2cosx}{sinx})sin^2x} $
Đặt $cotx=u$
$I=I_1+I_2$