Tích phân

N

newstarinsky

câu 1

[TEX]I=\int_{0}^{1}\frac{x+2}{x^2+1}dx[/TEX]

[TEX]= \int_{0}^{1}\frac{x}{x^2+1}dx+\int_{0}^{1}\frac{2}{x^2+1}dx[/TEX]

[TEX]=\int_{0}^{1}\frac{1}{2(x^2+1)}d(x^2+1) + I_1[/TEX]

[TEX]= \frac{1}{2}ln(x^2+1) +I_1[/TEX] (bạn thay số vào nhé)

Tính I1

Đặt [TEX]x=tant\Rightarrow dx=\frac{1}{cos^2t}dt=(1+tan^2t)dt[/TEX]

[TEX]I_1=\int_{0}^{\frac{\pi}{4}}\frac{1+tan^2t}{1+tan^2t}.dt[/TEX]

[TEX]=\int_{0}^{\frac{\pi}{4}}dt[/TEX]

[TEX]=t[/TEX] (thay số)

[TEX]=-\frac{\pi}{4}[/TEX]

Kết quả [TEX]I=ln(\frac{2}{5})-\frac{\pi}{4}[/TEX]
 
N

newstarinsky

câu 2

[TEX]I=\int_{0}^{1}\frac{3x+1-1}{3(3x+1)^3}dx[/TEX]

[TEX]=\int_{0}^{1}\frac{1}{3(3x+1)^2}dx-\int_{0}^{1}\frac{1}{3(3x+1)^3}dx[/TEX]

[TEX]=\int_{0}^{1}\frac{1}{9(3x+1)^2}d(3x+1)-\int_{0}^{1}\frac{1}{9(3x+1)^3}d(3x+1)[/TEX]

[TEX]=-\frac{1}{9(3x+1)}+\frac{1}{18(3x+1)^2}[/TEX](thay số)

[TEX]=-\frac{1}{32}[/TEX]
 
Top Bottom