Tích Phân lượng giác

N

nguyenbahiep1

latex.php

câu 1

[laTEX]I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{sinxdx}{(1-cos^2x).\sqrt{1+cosx}} \\ \\ \sqrt{1+cosx} = u \Rightarrow cosx = u^2 - 1 \\ \\ sinx.dx = -2udu \\ \\ \int_{\sqrt{1+\frac{\sqrt{2}}{2}}}^{1}\frac{-2udu}{(1-(u^2-1)^2).u} \\ \\ \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}\frac{2du}{1-(u^2-1)^2} \\ \\ \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}\frac{2du}{u^2(2-u^2)} = \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}(\frac{1}{u^2}+\frac{1}{2-u^2}) du [/laTEX]
 
V

vodoi1432

câu 1

[laTEX]I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{sinxdx}{(1-cos^2x).\sqrt{1+cosx}} \\ \\ \sqrt{1+cosx} = u \Rightarrow cosx = u^2 - 1 \\ \\ sinx.dx = -2udu \\ \\ \int_{\sqrt{1+\frac{\sqrt{2}}{2}}}^{1}\frac{-2udu}{(1-(u^2-1)^2).u} \\ \\ \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}\frac{2du}{1-(u^2-1)^2} \\ \\ \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}\frac{2du}{u^2(2-u^2)} = \int_{1}^{\sqrt{1+\frac{\sqrt{2}}{2}}}(\frac{1}{u^2}+\frac{1}{2-u^2}) du [/laTEX]

Ko còn cách nào khác hả bạn, mình làm ở nhà cũng thế nhưng biến xấu quá nên nghĩ sai
 
Top Bottom