Tích phân khó

M

magiciancandy

[TEX]\int_{0}^{1} \frac{x}{x^4 + x^2 + 1} dx[/TEX]



[TEX]\int_{1}^{\sqrt{3}} \frac{sqrt{x^2 + 1}}{x^2} dx[/TEX]

2, Đặt x=tant
=>dx=[TEX]\frac{1}{cos^2t}[/TEX]dt
Đổi cậnx=1=>t=[TEX]\frac{\Pi }{4}[/TEX]
x=[TEX]\sqrt{3}[/TEX]=>t=[TEX]\frac{\Pi }{3}[/TEX]
=>I=[TEX]\int_{\frac{\Pi }{4}}^{\frac{\Pi }{3}}\frac{\sqrt{tan^2t+1}}{tan^2tcos^2t}dt=\int_{\frac{\Pi }{4}}^{\frac{\Pi }{3}}\frac{\frac{1}{cost}}{sin^2t}=\int_{\frac{\Pi }{4}}^{\frac{\Pi }{3}}\frac{1}{cost(1-cos^2t)}=\int_{\frac{\Pi }{4}}^{\frac{\Pi }{3}}(\frac{1}{cost}+\frac{cost}{1-cos^2t})dt[/TEX]
Đến đây chắc bạn làm được rồi!
 
N

nguyengiahoa10

\[\begin{array}{l}
I = \int\limits_1^{\sqrt 3 } {\dfrac{{\sqrt {{x^2} + 1} }}{{{x^2}}}dx} \\
x = \tan t \Rightarrow dx = \dfrac{1}{{{{\cos }^2}t}}dt\\
x = 1 \Rightarrow t = \dfrac{\pi }{4}\\
x = \sqrt 3 \Rightarrow t = \dfrac{\pi }{3}\\
I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {{{\tan }^2}t + 1} }}{{{{\tan }^2}t{{\cos }^2}t}}dt} = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}} {\dfrac{{\dfrac{1}{{\cos t}}}}{{{{\sin }^2}t}}dt} = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}} {\dfrac{1}{{\sin 2t\sin t}}dt} = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{3}} {\dfrac{1}{{\cos t - \cos 3t}}dt}
\end{array}\]
em cũng làm giống chị nhưng tới đây thì thua rồi@@
 
N

nguyenbahiep1

câu 1

[laTEX]I = \int_{0}^{1} \frac{x}{x^4 + x^2 + 1} dx \\ \\ u = x^2 \Rightarrow \frac{1}{2}du = xdx \\ \\ I = \frac{1}{2} \int_{0}^{1} \frac{du}{u^2 + u + 1} = \frac{1}{2}\int_{0}^{1}\frac{du}{(u+\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} \\ \\ u+\frac{1}{2} = \frac{\sqrt{3}}{2}tan t [/laTEX]

câu 2

[laTEX]\int_{1}^{\sqrt{3}} \frac{\sqrt{x^2 + 1}}{x^2} dx = - \frac{\sqrt{x^2 + 1}}{x} \big|_1^{\sqrt{3}} + \int_{1}^{\sqrt{3}}\frac{dx}{\sqrt{x^2+1}} \\ \\ (- \frac{\sqrt{x^2 + 1}}{x} +ln|x+\sqrt{x^2+1}| ) \big|_1^{\sqrt{3}} [/laTEX]
 
Top Bottom