tính tích phân:
I = [TEX]\int_{0}^{\prod /2}\frac{x+(sinx)^2}{1+sin2x}[/TEX]
[TEX]Dat\ \ x=\frac{\pi}{2}-t[/TEX]
[TEX]I=\int_{0}^{\frac{\pi}{2}}\frac{\frac{\pi}{2}-t+sin^2(\frac{\pi}{2}-t)}{1+sin[2(\frac{\pi}{2}-t)]}dt=\int_{0}^{\frac{\pi}{2}}\frac{\frac{\pi}{2}-t+cos^2t}{1+sin2t}dt=\int_{0}^{\frac{\pi}{2}}\frac{\frac{\pi}{2}-x+cos^2x}{1+sin2x}dx[/TEX]
[TEX]I+I=\int_{0}^{\frac{\pi}{2}}\frac{x+sin^2x+\frac{ \pi}{2}-x+cos^2x}{1+sin2x}dx=(1+\frac{\pi}{2})\int_{0}^{ \frac{ \pi}{2}}\frac{1}{2cos^2(x-\frac{\pi}{4})}dx=(\frac{1}{2}+\frac{\pi}{4})tg(x-\frac{\pi}{4})\|_{0}^{\frac{\pi}{2}}=1+\frac{\pi}{2}[/TEX]
[TEX]I=\frac{1}{2}+\frac{\pi}{4}[/TEX]
[TEX]Chu\ \ y\ \ :\ \ 1+sin2x=(sinx+cosx)^2=[\sqrt2cos(x-\frac{\pi}{4})]^2=2cos^2(x-\frac{\pi}{4})[/TEX]