BÉ TỰ ĐỔI CẬN NHÉ
[tex]I=\int\limit_{3}^{4}\frac{dx}{x^5+x^4+x^3+x^2+x+1}=\int\limit_{3}^{4}\frac{(x-1)dx}{x^6-1}=\frac{1}{2}[\int\limit_{3}^{4}\frac{dx^2}{(x^2)^3-1}+\int\limit_{3}^{4}\frac{dx}{x^3+1}-\int\limit_{3}^{4}\frac{dx}{x^3-1}]=[/tex]
[tex]=\frac{1}{2}[\int\limit_{9}^{16}\frac{dx}{x^3-1}-\int\limit_{-4}^{-3}\frac{dx}{x^3-1}-\int\limit_{3}^{4}\frac{dx}{x^3-1}][/tex]
Tổng quát nhé:
[tex]\frac{1}{x^3-1}=-[\frac{1}{3(x-1)}+\frac{2x+1}{6(x^2+x+1)}+\frac{1}{x^2+x+1}][/tex]
[tex]\int\limit_{a}^{b}\frac{1}{x^3-1}=-[\int\frac{1}{3(x-1)}+\frac{d(x^2+x+1)}{6(x^2+x+1)}+\frac{2}{\sqrt{3}}\int\limit_{a}^{b}\frac{d(\frac{2}{\sqrt{3}}x)}{[(\frac{2x+1}{\sqrt{3}})^2+1][/tex]
Chủ yếu
[tex]I=\frac{2}{\sqrt{3}}\int\limit_{a}^{b}\frac{d(\frac{2}{\sqrt{3}}x)}{[(\frac{2x+1}{\sqrt{3}})^2+1][/tex]
[tex]=\frac{2}{\sqrt{3}}[arctan\frac{2b+1}{\sqrt{3}}-arctan\frac{2a+1}{\sqrt{3}}][/tex]
Tôi không biết gõ latex mấy-cố đọc nhé