[TEX]
[TEX]b) B=\int_{0}^{1}\frac{ln(1+x)}{1+x^2}dx[/TEX]
[TEX]{\rm{dat x = tanu}}[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\frac{{\ln (1 + \tan u)}}{{1 + \tan ^2 u}}} *\frac{{d(u)}}{{\cos ^2 u}}[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \tan u)du} [/TEX]
[TEX]{\rm{dat u = }}\frac{\Pi }{4} - t[/TEX]
[TEX] \to \left\{ \begin{array}{l}du = - dt \\ u = 0 \to t = \frac{\Pi }{4} \\ u = \frac{\Pi }{4} \to t = 0 \\ \end{array} \right.[/TEX]
[TEX] \to I = \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \tan (\frac{\Pi }{4} - t)dt} [/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \frac{{\tan \frac{\Pi }{4} - \tan t}}{{1 + \tan \frac{\Pi }{4}*\tan t}})dt}[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \frac{{1 - \tan t}}{{1 + \tan t}})dt[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (\frac{2}{{1 + \tan t}})dt}[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (2)dt} - \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \tan t)dt}[/TEX]
[TEX]I = \int\limits_0^{\frac{\Pi }{4}} {\ln (2)dx} - \int\limits_0^{\frac{\Pi }{4}} {\ln (1 + \tan x)dx}[/TEX]
[TEX]2I = x\ln 2\left| \begin{array}{l}\frac{\Pi }{4} \\ 0 \\ \end{array} \right. \to I = \frac{\Pi }{8}\ln 2[/TEX]