Chứng minh các hệ thức : [tex]\fn_cm \frac{sin^{2}\alpha -cos^{2}\alpha +cos^{4}\alpha }{cos^{2}\alpha -sin^{2}\alpha +sin^{4}\alpha }=tan^{4}\alpha[/tex]
$\dfrac{\sin^{2}\alpha -\cos^{2}\alpha +\cos^{4}\alpha }{\cos^{2}\alpha -\sin^{2}\alpha +\sin^{4}\alpha }=\dfrac{\sin^{2}\alpha -(1-\sin^{2}\alpha )+(1-\sin^2 \alpha )^2}{(1-\sin^{2}\alpha )-\sin^{2}\alpha +\sin^{4}\alpha }=\dfrac{\sin^{2}\alpha -1+\sin^{2}\alpha +\sin^4 \alpha -2\sin^2 \alpha +1}{1-\sin^{2}\alpha -\sin^{2}\alpha +\sin^{4}\alpha }
\\=\dfrac{\sin^4 \alpha}{1-2\sin^2 \alpha +\sin^4 \alpha }=\dfrac{\sin^4 \alpha}{(1- \sin^2 \alpha)^2}=\dfrac{\sin^4 \alpha}{\cos^2 \alpha}=\tan^4 \alpha$