Bài tập: Với a,b,c,x,y,z khác 0 [tex]\[tex]\frac{bz-cy}{a}= \frac{cx-az}{b}= \frac{ay-bx}{c}[/tex] [/tex] .Chứng mình rằng :[tex]\frac{a}{x}=\frac{b}{y}=\frac{c}{z}[/tex]
Help me!!
Sunny
[tex]\frac{bz-cy}{a}= \frac{cx-az}{b}= \frac{ay-bx}{c}[/tex]
[tex]=\frac{bza-cya}{a^2}= \frac{cxb-azb}{b^2}= \frac{ayc-bxc}{c^2}[/tex]
[tex]=\frac{bza-cya+cxb-azb+ayc-bxc}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0[/tex]
[tex]\Rightarrow \frac{bz-cy}{a}= \frac{cx-az}{b}= \frac{ay-bx}{c}=0[/tex]
[tex]\Rightarrow \left\{\begin{matrix}bz-cy=0 \\ cx-az=0 \\ ay-bx=0 \end{matrix}\right.[/tex]
[tex]\Rightarrow \left\{\begin{matrix}bz=cy \\ cx=az \\ ay=bx \end{matrix}\right.[/tex]
[tex]\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}[/tex]