$\sqrt{8 + \sqrt{32 + \sqrt{768}}}$
$= 2\sqrt{2 + \sqrt{2 + \sqrt{3}}}$
$= 2\sqrt{2 + \sqrt{2 + 2 \cos \dfrac{\pi}6 }}$
$= 2\sqrt{2 + \sqrt{4 \cos^2 \dfrac{\pi}{12}}}$
$= 2\sqrt{2 + 2 \cos \dfrac{\pi}{12}}$
$= 2\sqrt{4 \cos^2 \dfrac{\pi}{24}}$
$= 4 \cos \dfrac{\pi}{24}$
Do đó $a = 4, b = 24$ nên $a+b = 28$