d) Ta có:[tex]\frac{1}{(k+1)\sqrt{k}}=\frac{\sqrt{k}}{k(k+1)}=\sqrt{k}(\frac{1}{k}-\frac{1}{k+1})=\sqrt{k}(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}})(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}})=(1+\sqrt{\frac{k}{k+1}})(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}})<2(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}})[/tex]
[tex]\Rightarrow \frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2005\sqrt{2004}}<2(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}})=2(1-\frac{1}{\sqrt{2005}})<2[/tex]