View attachment 71810 Nhanh lên nha các bạn
a)[tex](\sqrt{2000}+\sqrt{2005})^{2}=2000+2.\sqrt{2005.2000}+2005=4005+2.\sqrt{2000.2003+2000.2} < 4005+2\sqrt{2000.2003+2003.2}=2002+2\sqrt{2002.2003}+2003=(\sqrt{2002}+\sqrt{2003})^{2}[/tex]
[tex]\Rightarrow \sqrt{2000}+\sqrt{2005}< \sqrt{2002}+\sqrt{2003}[/tex]
b)[tex](\sqrt{a+2}+\sqrt{a+4})^{2}=a+2+a+4+2\sqrt{(a+2)(a+4)}=a+a+6+2\sqrt{a(a+4)+2a+8}> a+a+6+2\sqrt{a(a+4)+2a}=a+a+6+2\sqrt{a(a+6)}=(\sqrt{a}+\sqrt{a+6})^{2}[/tex]
[tex]\Rightarrow \sqrt{a+2}+\sqrt{a+4}> \sqrt{a}+\sqrt{a+6}[/tex]