So sánh

R

ronaldover7

$a^2$=$b^2$+$c^2$
$(b+c)^2$=$b^2$+$c^2$+2bc
\Rightarrow $a^2$ < $(b+c)^2$ (b,c dương)
\Rightarrow a < b+c (a,b,c dương)
$a^3$=a($b^2$+$c^2$)=a$b^2$+a$c^2$
$a^2$=$b^2$+$c^2$
\Rightarrow$a^2$ > $c^2$,$a^2$>$b^2$
\Rightarrow a>b,c(a,b,c dương)
\Rightarrow a$b^2$+a$c^2$ > $b^3$+$c^3$
\Rightarrow $a^3$> $b^3$+$c^3$
 
Last edited by a moderator:
Top Bottom