37.√2003+ √2005 và 2√2004
39.√1998+√2000 và 2√1999
$\sqrt{2004}-\sqrt{2003}=(\sqrt{2004}-\sqrt{2003})(\sqrt{2004}+\sqrt{2003})\dfrac{1}{\sqrt{2004}+\sqrt{2003}}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}$
$\sqrt{2005}-\sqrt{2004}=(\sqrt{2005}-\sqrt{2004})(\sqrt{2005}+\sqrt{2004})\dfrac{1}{\sqrt{2005}+\sqrt{2004}}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}$
$\sqrt{2004}+\sqrt{2003}<\sqrt{2005}+\sqrt{2004}$
$\Rightarrow \dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2005}+\sqrt{2004}}$
$\Rightarrow \sqrt{2004}-\sqrt{2003}>\sqrt{2005}-\sqrt{2004}$
$\Rightarrow 2.\sqrt{2004}>\sqrt{2003}+\sqrt{2005}$
Dưới tương tự ...