So sánh 2 số

T

thaolovely1412

1.[TEX] A= 2^0+2^1+...+2^2010[/TEX]
\Rightarrow[TEX] 2A= 2(2^0+2^1+...+2^{2010})[/TEX]
\Rightarrow [TEX]2A=2^1+2^2+2^3+...+2^{2011}[/TEX]
\Rightarrow [TEX]2A-A= 2^1+2^2+2^3+...+2^{2011}-2^0-2^1-...-2^{2010}[/TEX]
hay[TEX] A= 2^{2011}-1[/TEX]
mà [TEX]B=2^{2011}-1[/TEX]
\Rightarrow [TEX]A=B[/TEX]
 
T

thaolovely1412

b/[TEX]202^{303}=(202^3)^{101}[/TEX]
[TEX]303^{202}=(303^2)^{101}[/TEX]
Ta lại có [TEX]202^3=101^3.8=101^2.808[/TEX]
[TEX]303^2=101^2.9[/TEX]
suy ra [TEX]202^3>303^2[/TEX]
 
D

duc_2605

b, $A= 202^{303}$ và $N= 303^{202}$
A = $202^{300}.202^3 ; N = 303^{200}.303^2$
A = $101^{300}.2^{300}.101^3.2^3 ; N = 101^{200}.3^{200}.101^2.3^2$
A = $101^{300}.8^{100}.101^3.8 ; N = 101^{200}.9^{100}.101^2.9$
A = $101^{300}.8^{101}.101^3 ; N = 101^{200}.9^{101}.101^2$
A = $101^{303}.8^{101}; N = 101^{202}.9^{101}$
A = $101^{101}.101^{202}.8^{101}; N = 101^{202}.9^{101}$
Rõ ràng A > N
 
Top Bottom