Toán 12 Số phức

V

vodichhocmai

Bài1 :
[tex](\frac{5+3.3^{0.5}i}{1-2.3^{0.5}i})^{21}[/tex]

Bài2 :
A=[tex]\frac{\sqrt{1+m}+i.\sqrt{1-m}}{\sqrt{1+m}-i.\sqrt{1-m}}-\frac{\sqrt{1-m}+i.\sqrt{1+m}}{\sqrt{1-m}-i.\sqrt{1+m}}[/tex]

Ta có:

[TEX] \frac{5+3\sqrt{3}i}{1-2\sqrt{3}i} =\frac{\(5+3\sqrt{3}i\)\(1+2\sqrt{3}i\)}{13}=-1+\sqrt{3}i=2 \[cos\(\(\frac{2\pi}{3}\) +sin\(\(\frac{2\pi}{3}\)i\] [/TEX]

[TEX]\(\frac{5+3\sqrt{3}i}{1-2\sqrt{3}i}\)^{21}=2^{21}\[cos\(\(14\pi\) +sin\(\(14\pi\)i\]=2^{21} [/TEX]

Bài2 :
A=[tex]\frac{\sqrt{1+m}+i.\sqrt{1-m} }{\sqrt{1+m}-i.\sqrt{1-m}}-\frac{\sqrt{1-m}+i.\sqrt{1+m} }{\sqrt{1-m}-i.\sqrt{1+m}}[/tex]

[TEX]A=\frac{\(\sqrt{1+m}+i.\sqrt{1-m}\)^2}{2} -\frac{\(\sqrt{1-m}+i.\sqrt{1+m}\)^2}{2}[/TEX]

[TEX]\ \ =\frac{1}{2}\[\(2m+2\sqrt{1-m^2}i\)-\(-2m+2\sqrt{1-m^2}i\) \][/TEX]

[TEX]\ \ =2m[/TEX]
 
Last edited by a moderator:
Top Bottom