(Chuyên Hà Tĩnh 2020)
Ta thấy: x = 1 không thỏa mãn. Với [tex]x\geq 2[/tex]
Đặt [tex]k=\frac{x^2-2}{xy+2}> 0(k\in \mathbb{N})[/tex]
Ta thấy: [tex]k> 0\Rightarrow k\geq 1\Rightarrow x^2-2\geq xy+2\Rightarrow x^2-xy\geq 4> 0\Rightarrow x(x-y)> 0\Rightarrow x> y[/tex]
Xét y = 1 ta cũng thấy không thỏa mãn. Vậy [tex]y\geq 2[/tex]
Ta có: [tex]x^2-2\vdots xy+2\Rightarrow x^2y^2-2y^2\vdots xy+2\Rightarrow (x^2y^2-4)+4-2y^2\vdots xy+2\Rightarrow 2y^2-4\vdots xy+2[/tex]
[tex]\Rightarrow 2y^2-4-(x^2-2)\vdots xy+2\Rightarrow 2y^2-x^2-2\vdots xy+2[/tex]
+ Nếu [tex]2y^2-x^2-2< 0\Rightarrow x^2+2-2y^2> 0[/tex]
Vì [tex]x^2+2-2y^2\vdots xy+2\Rightarrow x^2+2-2y^2\geq xy+2[/tex] [tex]\Rightarrow x^2-xy-2y^2\geq 0\Rightarrow (x+y)(x-2y)\geq 0\Rightarrow x\geq 2y[/tex])
Từ đó [tex]2y^2-4=2y.y-4\leq xy-4< xy+2[/tex](vô lí vì [tex]2y^2-4\vdots xy+2\Rightarrow 2y^2-4\geq xy+2 > 0[/tex])
+ Nếu [tex]2y^2-x^2-2> 0\Rightarrow 2y^2-x^2-2\geq xy+2> y^2+2\Rightarrow y^2-x^2> 4> 0[/tex](vô lí vì [tex]y< x[/tex])
+ Nếu [tex]2y^2-x^2-2=0\Rightarrow x^2=2(y^2-1)\vdots 2\Rightarrow x\vdots 2\Rightarrow x^2\vdots 4\Rightarrow y^2-1\vdots 2\Rightarrow[/tex] y lẻ
Đặt [tex]y=2m+1\Rightarrow x^2=2(y^2-1)=2(4m^2+4)=8m(m+1)[/tex]
Vì [tex]m(m+1)\vdots 2\Rightarrow \frac{x^2}{16}=(\frac{x}{4})^2=\frac{m(m+1)}{2}[/tex]
Đặt [tex]\frac{x}{4}=n\in \mathbb{N}\Rightarrow 2n^2=m(m+1)[/tex]
Vì [tex](m,m+1)=1;m< m+1[/tex] nên xảy ra các trường hợp:
* [tex]m=1,m+1=2n^2\Rightarrow \left\{\begin{matrix} m=1\\ n=1 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=4\\ y=3 \end{matrix}\right.(t/m)[/tex]
* [tex]m=2,m+1=n^2\Rightarrow n^2=3[/tex](loại)
* [tex]m=n^2,m+1=2\Rightarrow \left\{\begin{matrix} m=1\\ n=1 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=4\\ y=3 \end{matrix}\right.[/tex]
* [tex]m=2n^2,m+1=1\Rightarrow m=0,n=0\Rightarrow x=0,y=1[/tex](loại)
Vậy [tex](x,y)\in \left \{ (4,3) \right \}[/tex]