Cho a=111......1111(2n chữ số 1)
b=444...........4(n chữ số 4)
Chứng minh rằng a+b+1 là số chính phương
Gọi [TEX]\begin{matrix}\underbrace{111....11 }\\ n c/s 1 \end{matrix} la` x (x \in N*)[/TEX]
ta có:[TEX]a=\begin{matrix}\underbrace{111.....11 }\\ 2 n c/s 1 \end{matrix} =\begin{matrix}\underbrace{ 111.....11}\\ n c/s 1 \end{matrix}.10^n +\begin{matrix}\underbrace{11....111}\\ n c/s 1 \end{matrix}[/TEX]
[TEX]=\begin{matrix}\underbrace{111.....11}\\n c/s 1 \end{matrix} (9.\begin{matrix}\underbrace{111.....11}\\ n c/s 1 \end{matrix} +1)+\begin{matrix}\underbrace{ 11...11}\\ n c/s 1 \end{matrix}[/TEX]
[TEX]=x(9x+1)+x[/TEX]
[TEX]\Rightarrow a+b+1 =9x^2+2x+4x+1=9x^2+6x+1 =(3x+1)^2 \in N*[/TEX]
[TEX]\Rightarrow a+b+1 la` so chinh phuong (dpcm)[/TEX]
..done...............................