[tex]M=\frac{x^2(1+x)-y^2(1-y)-x^2y^2(x+y)}{(x+y)(x+1)(1-y)}=\frac{(x^3+y^3)+(x^2-y^2)-x^2y^2(x+y)}{(x+y)(x+1)(1-y)}=\frac{(x+y)[(x^2-xy+y^2)+(x-y)-x^2y^2]}{(x+y)(x+1)(1-y)}=\frac{x(x-y)+(x-y)+y^2(1-x^2)}{(x+1)(1-y)}=\frac{(x+1)(x-y+y^2(1-x))}{(x+1)(1-y)}=\frac{x(1-y^2)+(y^2-y)}{1-y}=x(1+y)-y[/tex]