A=[tex]\dpi{120} (\frac{1}{x}-\frac{1}{y}).(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}})[/tex] với x>0, y>0,x khác y
$A=(\dfrac1x-\dfrac1y)(\dfrac{\sqrt x-\sqrt y}{\sqrt x+\sqrt y}-\dfrac{\sqrt x+\sqrt y}{\sqrt x-\sqrt y})
\\=\dfrac{y-x}{xy}.\dfrac{(\sqrt x-\sqrt y)^2-(\sqrt x+\sqrt y)^2}{(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}
\\=\dfrac{-(\sqrt x-\sqrt y)(\sqrt x+\sqrt y)}{xy}.\dfrac{x-2\sqrt{xy}+y-x-2\sqrt{xy}-y}{(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}
\\=\dfrac{-(\sqrt x-\sqrt y)(\sqrt x+\sqrt y)}{xy}.\dfrac{-4\sqrt{xy}}{(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}
\\=\dfrac 4{\sqrt{xy}}$