5.
a) ĐK: $x\ge 0;x\ne \dfrac19$.
$D=\dfrac{3\sqrt x-1}{\sqrt x+2}-\dfrac{\sqrt x-2}{3\sqrt x-1}-\dfrac{5x+4\sqrt x+2}{3x+5\sqrt x-2}$
$=\dfrac{(3\sqrt x-1)^2-(\sqrt x-2)(\sqrt x+2)-(5x+4\sqrt x+2)}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{9x-6\sqrt x+1-x+4-5x-4\sqrt x-2}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{3x-10\sqrt x+3}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{(\sqrt x-3)(3\sqrt x-1)}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{\sqrt x-3}{\sqrt x+2}$
b) $D=\dfrac{\sqrt x-3}{\sqrt x+2}=\dfrac{\sqrt x+2-5}{\sqrt x+2}=1-\dfrac 5{\sqrt x+2}$
$D\in \mathbb{Z}\Leftrightarrow \dfrac 5{\sqrt x+2}\in \mathbb{Z}\Leftrightarrow (\sqrt x+2)\in Ư(5)$
Mà $\sqrt x+2\ge 2\Rightarrow \sqrt x+2=5\Leftrightarrow x=9$ (TM)
6.
a) ĐK: $x\ge 0;x\ne 9$
$G=\dfrac{x\sqrt x-3}{x-2\sqrt x-3}-\dfrac{2(\sqrt x-3)}{\sqrt x+1}+\dfrac{\sqrt x+3}{3-\sqrt x}$
$=\dfrac{x\sqrt x-3-2(\sqrt x-3)^2-(\sqrt x+3)(\sqrt x+1)}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x\sqrt x-3-2x+12\sqrt x-18-x-4\sqrt x-3}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x\sqrt x-3x+8\sqrt x-24}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{(x+8)(\sqrt x-3)}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x+8}{\sqrt x+1}$
b) Khi $x=14-6\sqrt 5=(3-\sqrt 5)^2$ (TM) $\Rightarrow \sqrt x=3-\sqrt 5$ thì giá trị của bt $G$ là:
$G=\dfrac{22-6\sqrt 5}{4-\sqrt 5}=\dfrac{(22-6\sqrt 5)(4+\sqrt 5)}{16-5}=\dfrac{58-2\sqrt 5}{11}$
c) $G=\dfrac{x+8}{\sqrt x+1}=\dfrac{x-1+9}{\sqrt x+1}=\sqrt x-1+\dfrac 9{\sqrt x+1}=\sqrt x+1+\dfrac 9{\sqrt x+1}-2\ge 6-2=4$.
Dấu '=' xảy ra khi $x=4$.
Vậy $G_{min}=4$ khi $x=4$
7.
a) ĐK: $x>0;x\ne 1$.
$H=\dfrac{x^2-\sqrt x}{x+\sqrt x+1}-\dfrac{2x+\sqrt x}{\sqrt x}+\dfrac{2(x-1)}{\sqrt x-1}$
$=\dfrac{\sqrt x(\sqrt x-1)(x+\sqrt x+1)}{x+\sqrt x+1}-\dfrac{\sqrt x(2\sqrt x+1)}{\sqrt x}+\dfrac{2(\sqrt x+1)(\sqrt x-1)}{\sqrt x-1}$
$=\sqrt x(\sqrt x-1)-(2\sqrt x+1)+2(\sqrt x+1)$
$=x-\sqrt x-2\sqrt x-1+2\sqrt x+2$
$=x-\sqrt x+1$
b) $H=x-\sqrt x+1=(x-\sqrt x+\dfrac14)+\dfrac 34=(\sqrt x-\dfrac12)^2+\dfrac 34\ge \dfrac 34$
Dấu '=' xảy ra khi $x=\dfrac14$
Vậy $H_{min}=\dfrac 34$ khi $x=\dfrac14$
c) $Q=\dfrac{2\sqrt x}{x-\sqrt x+1}=\dfrac 2{\sqrt x+\dfrac1{\sqrt x}-1}\le \dfrac 2{2-1}=2$ (vì $x>0)$
Mặt khác: $Q>0\Rightarrow Q\in \mathbb{Z}\Leftrightarrow Q=1$
$\Rightarrow 2\sqrt x=x-\sqrt x+1$
$\Leftrightarrow x-3\sqrt x+\dfrac 94-\dfrac 54=0$
$\Leftrightarrow (\sqrt x-\dfrac 32)^2=\dfrac 54$
$\Leftrightarrow \sqrt x-\dfrac 32=\dfrac{\pm \sqrt 5}2$
$\Leftrightarrow \sqrt x=\dfrac{3\pm \sqrt 5}2$
$\Leftrightarrow x=\dfrac{7\pm 3\sqrt 5}2$ (TM)
Vậy...