Toán Rút gọn

Nữ Thần Mặt Trăng

Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
28 Tháng hai 2017
4,472
5,490
779
Hà Nội
THPT Đồng Quan
5.
a) ĐK: $x\ge 0;x\ne \dfrac19$.
$D=\dfrac{3\sqrt x-1}{\sqrt x+2}-\dfrac{\sqrt x-2}{3\sqrt x-1}-\dfrac{5x+4\sqrt x+2}{3x+5\sqrt x-2}$
$=\dfrac{(3\sqrt x-1)^2-(\sqrt x-2)(\sqrt x+2)-(5x+4\sqrt x+2)}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{9x-6\sqrt x+1-x+4-5x-4\sqrt x-2}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{3x-10\sqrt x+3}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{(\sqrt x-3)(3\sqrt x-1)}{(\sqrt x+2)(3\sqrt x-1)}$
$=\dfrac{\sqrt x-3}{\sqrt x+2}$
b) $D=\dfrac{\sqrt x-3}{\sqrt x+2}=\dfrac{\sqrt x+2-5}{\sqrt x+2}=1-\dfrac 5{\sqrt x+2}$
$D\in \mathbb{Z}\Leftrightarrow \dfrac 5{\sqrt x+2}\in \mathbb{Z}\Leftrightarrow (\sqrt x+2)\in Ư(5)$
Mà $\sqrt x+2\ge 2\Rightarrow \sqrt x+2=5\Leftrightarrow x=9$ (TM)
6.
a) ĐK: $x\ge 0;x\ne 9$
$G=\dfrac{x\sqrt x-3}{x-2\sqrt x-3}-\dfrac{2(\sqrt x-3)}{\sqrt x+1}+\dfrac{\sqrt x+3}{3-\sqrt x}$
$=\dfrac{x\sqrt x-3-2(\sqrt x-3)^2-(\sqrt x+3)(\sqrt x+1)}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x\sqrt x-3-2x+12\sqrt x-18-x-4\sqrt x-3}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x\sqrt x-3x+8\sqrt x-24}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{(x+8)(\sqrt x-3)}{(\sqrt x+1)(\sqrt x-3)}$
$=\dfrac{x+8}{\sqrt x+1}$
b) Khi $x=14-6\sqrt 5=(3-\sqrt 5)^2$ (TM) $\Rightarrow \sqrt x=3-\sqrt 5$ thì giá trị của bt $G$ là:
$G=\dfrac{22-6\sqrt 5}{4-\sqrt 5}=\dfrac{(22-6\sqrt 5)(4+\sqrt 5)}{16-5}=\dfrac{58-2\sqrt 5}{11}$
c) $G=\dfrac{x+8}{\sqrt x+1}=\dfrac{x-1+9}{\sqrt x+1}=\sqrt x-1+\dfrac 9{\sqrt x+1}=\sqrt x+1+\dfrac 9{\sqrt x+1}-2\ge 6-2=4$.
Dấu '=' xảy ra khi $x=4$.
Vậy $G_{min}=4$ khi $x=4$
7.
a) ĐK: $x>0;x\ne 1$.
$H=\dfrac{x^2-\sqrt x}{x+\sqrt x+1}-\dfrac{2x+\sqrt x}{\sqrt x}+\dfrac{2(x-1)}{\sqrt x-1}$
$=\dfrac{\sqrt x(\sqrt x-1)(x+\sqrt x+1)}{x+\sqrt x+1}-\dfrac{\sqrt x(2\sqrt x+1)}{\sqrt x}+\dfrac{2(\sqrt x+1)(\sqrt x-1)}{\sqrt x-1}$
$=\sqrt x(\sqrt x-1)-(2\sqrt x+1)+2(\sqrt x+1)$
$=x-\sqrt x-2\sqrt x-1+2\sqrt x+2$
$=x-\sqrt x+1$
b) $H=x-\sqrt x+1=(x-\sqrt x+\dfrac14)+\dfrac 34=(\sqrt x-\dfrac12)^2+\dfrac 34\ge \dfrac 34$
Dấu '=' xảy ra khi $x=\dfrac14$
Vậy $H_{min}=\dfrac 34$ khi $x=\dfrac14$
c) $Q=\dfrac{2\sqrt x}{x-\sqrt x+1}=\dfrac 2{\sqrt x+\dfrac1{\sqrt x}-1}\le \dfrac 2{2-1}=2$ (vì $x>0)$
Mặt khác: $Q>0\Rightarrow Q\in \mathbb{Z}\Leftrightarrow Q=1$
$\Rightarrow 2\sqrt x=x-\sqrt x+1$
$\Leftrightarrow x-3\sqrt x+\dfrac 94-\dfrac 54=0$
$\Leftrightarrow (\sqrt x-\dfrac 32)^2=\dfrac 54$
$\Leftrightarrow \sqrt x-\dfrac 32=\dfrac{\pm \sqrt 5}2$
$\Leftrightarrow \sqrt x=\dfrac{3\pm \sqrt 5}2$
$\Leftrightarrow x=\dfrac{7\pm 3\sqrt 5}2$ (TM)
Vậy...
 
Top Bottom