7. Khi [TEX]xy+yz+zx=1[/TEX] ta có [TEX]x^2+1=x^2+xy+yz+zx=(x+y)(z+x)[/TEX], tương tự: [TEX]y^2+1=(x+y)(y+z), z^2+1=(z+x)(y+z)[/TEX]
Khi đó: [tex]T=x \sqrt{\frac{(x+y)(z+x)(y+z)^2}{(x+y)(z+x)}}+y \sqrt{\frac{(x+y)(z+y)(x+z)^2}{(x+y)(z+y)}}+z \sqrt{\frac{(x+z)(z+y)(x+y)^2}{(z+y)(z+x)}}[/tex]
[tex]\Leftrightarrow T=x(y+z)+y(z+x)+z(x+y)=2(xy+yz+zx)=2[/tex]
Vậy...