Đk: .....
[tex]A=1: (\frac{x+2\sqrt{x}-2}{(\sqrt{x})^{3}+1}-\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{1}{\sqrt{x}+1})=1: (\frac{x+2\sqrt{x}-2}{(x-\sqrt{x}+1).(\sqrt{x}+1)}-\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{1}{\sqrt{x}+1})=1:\frac{x+2\sqrt{x}-2-(\sqrt{x}-1).(\sqrt{x}+1)+x-\sqrt{x}+1}{(\sqrt{x}+1).(x-\sqrt{x}+1)}=1:\frac{x+2\sqrt{x}-2-x+1+x-\sqrt{x}+1}{(\sqrt{x}+1).(x-\sqrt{x}+1)}=1:\frac{x+\sqrt{x}}{(\sqrt{x}+1).(x-\sqrt{x}+1)}=1:\frac{\sqrt{x}}{(x-\sqrt{x}+1)}=\frac{x-\sqrt{x}+1}{\sqrt{x}}[/tex]
[tex]x=7-4\sqrt{3}=4-4\sqrt{3}+3=(2-\sqrt{3})^{2}\Rightarrow \sqrt{x}=2-\sqrt{3}[/tex] (tm) thay vào A ta có [tex]A=\frac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}=\frac{6-3\sqrt{3}}{2-\sqrt{3}}=3[/tex]
[tex]A=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\frac{(\sqrt{x}-1)^{2}+\sqrt{x}}{\sqrt{x}}=\frac{(\sqrt{x}-1)^{2}}{\sqrt{x}}+1\geq 1[/tex]
Dấu "=" có khi x=1