Rút gon+Tìm min

H

hockhongngung98

M

mapkunguhoc_95

I.
M = [TEX]\frac{3\sqrt{ab}(\sqrt{a} - \sqrt{b})}{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})} + \frac{a\sqrt{a} - 3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}(\sqrt{a}+\sqrt{b})}[/TEX]
=[TEX]\frac{3\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{3a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}}{(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)}[/TEX]
=[TEX]\frac{3\sqrt{b}(a-\sqrt{ab}+b) +3a\sqrt{a} - 3a\sqrt{b} + 3b\sqrt{a}}{a\sqrt{a} + b\sqrt{b}}[/TEX]
=[TEX] \frac{3a\sqrt{a}+3b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}[/TEX]
=3
II.
* [TEX]x - 1 -2\sqrt{x - 2} = (\sqrt{x - 2} - 1)^2[/TEX]
*[TEX]x + 7 - \sqrt{x - 2} = (\sqrt{x - 2} - 3)^2[/TEX]
\Rightarrowy= |[TEX]\sqrt{(x - 2)}[/TEX] - 1| + |[TEX]\sqrt{(x - 2)}[/TEX] - 3|
\Rightarrow x=2\Rightarrowy=4
x \geq 2\Rightarrowy=2
vậy miny⁡ là 2
 
Y

yumi_26

b,
gif.latex

gif.latex

gif.latex


Áp dụng BĐT |a| + |b| \geq |a+b| ta có:

gif.latex

gif.latex

gif.latex

gif.latex
 
Top Bottom