D
dieuhien0803
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
1)Rút gọn biểu thức :
$P =\dfrac{ 1 – \sqrt[3]{a}}{1 +\sqrt[3]{a} + \sqrt[3]{a^2}} - \dfrac{1 + \sqrt[3]{a}}{1 – \sqrt[3]{a} + \sqrt[3]{a^2}}$
2) CMR: $\dfrac1{\sqrt{3}} + \dfrac1{3 \sqrt2} + \dfrac1{\sqrt3}( \sqrt{\dfrac 5{12}} -\dfrac1{\sqrt6}) =\sqrt{\dfra}$
3) Cho $xy>0$ và $\begin{cases}a = xy +\sqrt{( 1+x^2)(1+y^2)}\\b = x\sqrt{1+y^2} + y\sqrt{1+x^2}\end{cases}$
Tính b theo a
$P =\dfrac{ 1 – \sqrt[3]{a}}{1 +\sqrt[3]{a} + \sqrt[3]{a^2}} - \dfrac{1 + \sqrt[3]{a}}{1 – \sqrt[3]{a} + \sqrt[3]{a^2}}$
2) CMR: $\dfrac1{\sqrt{3}} + \dfrac1{3 \sqrt2} + \dfrac1{\sqrt3}( \sqrt{\dfrac 5{12}} -\dfrac1{\sqrt6}) =\sqrt{\dfra}$
3) Cho $xy>0$ và $\begin{cases}a = xy +\sqrt{( 1+x^2)(1+y^2)}\\b = x\sqrt{1+y^2} + y\sqrt{1+x^2}\end{cases}$
Tính b theo a
Last edited by a moderator: