A= $\frac{y-x}{xy}$ : [$\frac{y^{2}}{(x-y)^{2}}$ - $\frac{2x^{2}y}{[(x-y)(x+y)]^{2}}$ + $\frac{x^{2}}{(y-x)(y+x)}$]
= $\frac{y-x}{xy} : [\frac{y^{2}}{(x-y)^{2}} - \frac{2x^{2}y}{(x-y)^{2}} + \frac{x^{2}}{y-x}]$
= $\frac{y-x}{xy} : [\frac{y^{2}}{(x-y)^{2}} - \frac{2x^{2}y}{(x-y)^{2}} - \frac{x^{2}}{x-y}]$
= $\frac{y-x}{xy} : [\frac{y^{2}}{(x-y)^{2}} - \frac{2x^{2}y}{(x-y)^{2}} - \frac{x^{2}.(x-y)}{(x-y)^{2}}]$
= $\frac{y-x}{xy} : [\frac{y^{2}-2x^{2}y-x^{2}.(x-y)}{(x-y)^{2}}]$
= $\frac{y-x}{xy} : [\frac{y^{2}-x^{2}y-x^{3}}{(x-y)^{2}}]$
= $\frac{y-x}{xy} : [\frac{y^{2}-x^{2}.(x+y)}{(x-y)^{2}}]$
= $\frac{y-x}{xy} : [\frac{y^{2}-x^{2}}{(x-y)^{2}}]$
= $\frac{y-x}{xy} . \frac{(x-y)^{2}}{y^{2}-x^{2}}$
= $\frac{(x-y)^{2}}{xy}$
b)
Ta có A+4 = $\frac{(x-y)^{2}}{xy} + 4$
= $\frac{(x^{2}+y^{2}-2xy+4xy}{xy}$
= $\frac{(x+y)^{2}}{xy}$
Ta có $(x+y)^{2} >= 0$
xy < 0 ( do x>0, y<0)
=> A+4>0
hay A>-4