Giải giúp mik nha
Cảm ơn.
View attachment 177070
[tex]1/\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left | \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right |\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}= \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\Leftrightarrow \frac{1}{abc}(a+b+c)=0[/tex](luôn đúng)
[tex]2/[/tex]
a,[tex]\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\sqrt{\frac{a^2(a+1)^2+(a+1)^2+a^2}{a^2(a+1)^2}}=\sqrt{\frac{(a^2+a+1)^2}{a^2(a+1)^2}}=\frac{a^2+a+1}{a(a+1)}(=1+\frac{1}{a}-\frac{1}{a+1})[/tex]
b, áp dụng câu a thay vào tính thôi