[tex]A = \dfrac{cos(x + y) + cos(x - y)}{cos(x + y).cos(x - y)}=\frac{(cosx.cosy+sinx.siny)+(cosx.cosy-sinx.siny)}{(cosx.cosy+sinx.siny).(cosx.cosy-sinx.siny)}=\frac{2cosx.cosy}{cos^2x.cos^2y-sin^2x.sin^2y}=\frac{2cosx.cosy}{cos^2x.cos^2y-(1-cos^2x)(1-cos^2y)}=\frac{2cosx.cosy}{cos^2x+cos^2y-1}=\frac{4cosx.cosy}{(2cos^2x-1)+(2cos^2y-1)}=\frac{4cosx.cosy}{cos2x.cos2y}[/tex]
[tex]C=\dfrac{sin(x + y).sin(x - y)}{sinx + sin y}=\frac{(sinx.cosy+siny.cosx)(sinx.cosy-siny.cosx)}{sinx+siny}=\frac{sin^2x.cos^2y-sin^2y.cos^2x}{sinx+siny}=\frac{sin^2x(1-sin^2y)-sin^2y(1-sin^2x)}{sinx+siny}=\frac{sin^2x-sin^2y}{sinx+siny}=\frac{(sinx+siny)(sinx-siny)}{sinx+siny}=sinx-siny[/tex]