$A=3\sqrt{2.25}-7\sqrt{2.4}+12\sqrt{2.9}=15\sqrt2-14\sqrt2+36\sqrt2=37\sqrt2$
$B=\sqrt{25-2.5.\sqrt3+3}-\sqrt{3+2.\sqrt3.1+1}\\=\sqrt{(5-\sqrt3)^2}-\sqrt{(\sqrt3+1)^2}\\=|5-\sqrt3|-|\sqrt3+1|\\=...$
$C=\left(\dfrac{\sqrt5.\sqrt5.\sqrt2+\sqrt2.\sqrt2.\sqrt5}{\sqrt5+\sqrt2}+\sqrt{250}\right):\sqrt{10}\\=\left(\dfrac{\sqrt{10}(\sqrt5+\sqrt2)}{\sqrt5+\sqrt2}+\sqrt{250}\right):\sqrt{10}\\=(\sqrt{10}+\sqrt{250}):\sqrt{10}\\=\dfrac{\sqrt{10}(1+\sqrt{25})}{\sqrt{10}}\\=...$