$a)\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}
\\=\sqrt{5+3+2+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}
\\=\sqrt{(\sqrt{5}+\sqrt{3}-\sqrt{2})^2}
\\=\sqrt{5}+\sqrt{3}-\sqrt{2}
\\c)\dfrac{1+\sqrt 5}{\sqrt 2+\sqrt{3+\sqrt 5}}+\dfrac{1-\sqrt 5}{\sqrt 2-\sqrt{3-\sqrt 5}}
\\=\dfrac{\sqrt 2+\sqrt{10}}{2+\sqrt{6+2\sqrt 5}}+\dfrac{\sqrt 2-\sqrt{10}}{2-\sqrt{6-2\sqrt 5}}
\\=\dfrac{\sqrt 2+\sqrt{10}}{2+\sqrt{(\sqrt 5+1)^2}}+\dfrac{\sqrt 2-\sqrt{10}}{2-\sqrt{(\sqrt 5-1)^2}}
\\=\dfrac{\sqrt 2+\sqrt{10}}{3+\sqrt 5}+\dfrac{\sqrt 2-\sqrt{10}}{3-\sqrt 5}
\\=\dfrac{(\sqrt 2+\sqrt{10})(3-\sqrt 5)+(\sqrt 2-\sqrt{10})(3+\sqrt 5)}{9-5}
\\=\dfrac{3\sqrt 2-\sqrt{10}+3\sqrt{10}-5\sqrt 2+3\sqrt 2+\sqrt{10}-3\sqrt{10}-5\sqrt 2}{4}
\\=\dfrac{-4\sqrt 2}{4}=-\sqrt 2$