Toán Rút gọn biểu thức chứa căn bậc hai

Nữ Thần Mặt Trăng

Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
28 Tháng hai 2017
4,472
5,490
779
Hà Nội
THPT Đồng Quan
[tex]P=\left ( \sqrt{x} +\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right )\div \left ( \frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x} -\frac{x+y}{\sqrt{xy}}\right )[/tex]
$P=\left ( \sqrt{x} +\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right ): \left ( \dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x} -\dfrac{x+y}{\sqrt{xy}}\right )\\=\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left [ \dfrac{x}{\sqrt{y}(\sqrt{x}+\sqrt{y})}-\dfrac{y}{\sqrt{x}(\sqrt{x}-\sqrt{y})}-\dfrac{x+y}{\sqrt{xy}} \right ]\\=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}(\sqrt{x}-\sqrt{y})-y\sqrt{y}(\sqrt{x}+\sqrt{y})-(x+y)(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{xy}(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}\\=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}\\=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}.\dfrac{\sqrt{xy}(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{-\sqrt{xy}(x+y)}\\=-(\sqrt{x}-\sqrt{y})=\sqrt{y}-\sqrt{x}$
 
Top Bottom