Toán 9 Rút gọn $A=\sqrt{1+\dfrac1{a^2}+\dfrac1{(a+1)^2}}$

Tư Âm Diệp Ẩn

Học sinh gương mẫu
HV CLB Hội họa
Hội viên CLB Ngôn từ
Thành viên
18 Tháng bảy 2018
1,872
2,037
326
20
Vĩnh Phúc
THPT Nguyễn Viết Xuân
a) [tex]A^2=1+\frac{1}{a^2}+\frac{1}{(a+1)^2}=\frac{a^2(a+1)^2+(a+1)^2+a^2}{a^2(a+1)^2}=\frac{a^2(a^2+2a+1+1)+(a+1)^2}{a^2(a+1)^2}\\ =\frac{a^4+2a^2(a+1)+(a+1)^2}{a^2(a+1)^2}=\frac{(a^2+a+1)^2}{a^2(a+1)^2}\\ \Rightarrow A=\frac{a^2+a+1}{a(a+1)}(a>0)[/tex]
b) Từ câu a, ta có:
[tex]\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\frac{a^2+a+1}{a(a+1)}=1+\frac{1}{a(a+1)}=1+\frac{1}{a}-\frac{1}{a+1}[/tex]
[tex]\Rightarrow B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\\ B=(1+\frac{1}{1}-\frac{1}{2})+(1+\frac{1}{2}-\frac{1}{3})+....+(1+\frac{1}{99}-\frac{1}{100})\\ B=99+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100})\\ B=100-\frac{1}{100}=99.99[/tex]
 

Blue Plus

Cựu TMod Toán|Quán quân WC18
Thành viên
TV ấn tượng nhất 2017
7 Tháng tám 2017
4,506
10,437
1,114
Khánh Hòa
$\color{Blue}{\text{Bỏ học}}$
$1+\dfrac1{a^2}+\dfrac1{(a+1)^2}\\=1+\dfrac{1}{a^2}+\dfrac{1}{[-(a+1)]^2}\\=1+\dfrac{1}{a^2}+\dfrac{1}{[-(a+1)]^2}+2\left ( \dfrac{1+a-(a+1)}{1.a.[-(a+1)]} \right )(\text{do }1+a-(a+1)=0)\\=1+\dfrac{1}{a^2}+\dfrac{1}{[-(a+1)]^2}+2\left ( \dfrac{-1}{a(a+1)}+\dfrac{-1}{a+1}+\dfrac{1}{a} \right )\\=\left ( 1+\dfrac{1}{a}-\dfrac{1}{a+1} \right )^2\\\Rightarrow A=\sqrt{\left(1+\dfrac1a-\dfrac1{a+1}\right)^2}=\left|1+\dfrac1a-\dfrac1{a+1}\right|=1+\dfrac1a-\dfrac1{a+1}(\text{do }a>0)$
$B=\left ( 1+\dfrac{1}{1}-\dfrac{1}{2} \right )+\left ( 1+\dfrac{1}{2}-\dfrac{1}{3} \right )+...+\left ( 1+\dfrac{1}{99}-\dfrac{1}{100} \right )\\...$
 
Top Bottom