a) [tex]A^2=1+\frac{1}{a^2}+\frac{1}{(a+1)^2}=\frac{a^2(a+1)^2+(a+1)^2+a^2}{a^2(a+1)^2}=\frac{a^2(a^2+2a+1+1)+(a+1)^2}{a^2(a+1)^2}\\ =\frac{a^4+2a^2(a+1)+(a+1)^2}{a^2(a+1)^2}=\frac{(a^2+a+1)^2}{a^2(a+1)^2}\\ \Rightarrow A=\frac{a^2+a+1}{a(a+1)}(a>0)[/tex]
b) Từ câu a, ta có:
[tex]\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\frac{a^2+a+1}{a(a+1)}=1+\frac{1}{a(a+1)}=1+\frac{1}{a}-\frac{1}{a+1}[/tex]
[tex]\Rightarrow B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\\ B=(1+\frac{1}{1}-\frac{1}{2})+(1+\frac{1}{2}-\frac{1}{3})+....+(1+\frac{1}{99}-\frac{1}{100})\\ B=99+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100})\\ B=100-\frac{1}{100}=99.99[/tex]