$sin(x^{2}+x)=\frac{1}{2}=sin \frac{\pi}{6} \Leftrightarrow \left[\begin{matrix} x^{2}+x= \frac{\pi}{6}+k2\pi & \\ x^{2}+x=\pi-\frac{\pi}{6}+k2\pi & \end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x^{2}+x= \frac{\pi}{6}+k2\pi & (1) \\ x^{2}+x=\frac{5\pi}{6}+k2\pi & (2) \end{matrix}\right.$ $(k \in \mathbb{Z})$
$(1) \Leftrightarrow (x+\frac{1}{2})^{2} = \frac{\pi}{6}+k2\pi+\frac{1}{4} \Leftrightarrow x+\frac{1}{2} = \pm \sqrt{\frac{\pi}{6}+k2\pi+\frac{1}{4}} \Leftrightarrow x = \pm \sqrt{\frac{\pi}{6}+k2\pi+\frac{1}{4}}-\frac{1}{2}$ $(k \in \mathbb{Z})$
$(2) \Leftrightarrow (x+\frac{1}{2})^{2} = \frac{5\pi}{6}+k2\pi+\frac{1}{4} \Leftrightarrow x+\frac{1}{2} = \pm \sqrt{\frac{5\pi}{6}+k2\pi+\frac{1}{4}} \Leftrightarrow x = \pm \sqrt{\frac{5\pi}{6}+k2\pi+\frac{1}{4}}-\frac{1}{2}$ $(k \in \mathbb{Z})$
Vậy phương trình có tập nghiệm $S=\{\pm \sqrt{\frac{\pi}{6}+k2\pi+\frac{1}{4}}-\frac{1}{2}; \pm \sqrt{\frac{5\pi}{6}+k2\pi+\frac{1}{4}}-\frac{1}{2} \}$ $(k \in \mathbb{Z})$