pt lượng giác

L

lp_qt

Câu 3

pt $\iff 6\sin x(\sin^2 x+\cos^2 x)-3\cos^3 x=5\sin 2x.\cos x$

$\iff 6\sin^3 x-4\sin x.\cos^2 x-3\cos^3 x=0$

• $\cos x=0 \Longrightarrow \sin x=0(vl)$

•$\cos x \ne 0$ Chia cả 2 vế cho $\cos^3 x$

$6.\tan^3 x-4\tan x-3=0 $
 
Last edited by a moderator:
S

sonad1999

2) [TEX] 2cosx.cos2x.cos3x = 7cos2x + 4[/TEX]
[TEX]\Leftrightarrow (cos4x + cos2x)cos2x = 7cos2x + 4[/TEX]
[TEX]\Leftrightarrow (2cos^2{2x} -1 + cos2x)cos2x = 7cos2x + 4[/TEX]
[TEX]\Leftrightarrow 2cos^3{2x} + cos^2{2x} - 8cos2x - 4 =0 [/TEX]
[TEX]\Leftrightarrow cos2x=\frac{-1}{2} ( cos2x \leq 1 )[/TEX]
[TEX]\Leftrightarrow x = ......[/TEX]
 
Top Bottom