pt lượng giác

V

vietdung1998vp

\[\begin{array}{l}
\tan \left( {\frac{\pi }{4} - x} \right)\tan \left( {\frac{\pi }{4} + x} \right)\\
= \frac{{\sin \left( {\frac{\pi }{4} - x} \right)}}{{\cos \left( {\frac{\pi }{4} - x} \right)}}\frac{{\sin \left( {\frac{\pi }{4} + x} \right)}}{{\cos \left( {\frac{\pi }{4} + x} \right)}} = \frac{{\frac{1}{2}\left( {\cos 2x - \cos \frac{\pi }{2}} \right)}}{{\frac{1}{2}\left( {\cos 2x + \cos \frac{\pi }{2}} \right)}}\\
= \frac{{\cos 2x - \cos \frac{\pi }{2}}}{{\cos 2x + \cos \frac{\pi }{2}}} = \frac{{\cos 2x}}{{\cos 2x}} = 1
\end{array}\]
 
Top Bottom