Pt lượng giác

G

goodgirla1city

X

xuanquynh97

Bài 2
ĐK $sin2x \not=0$

PT \Leftrightarrow $sin2x-\dfrac{1}{sin2x}+sinx-\dfrac{1}{2sinx}-2\dfrac{cos2x}{sin2x}=0$

\Leftrightarrow $\frac{-cos^22x}{sin2x}-\dfrac{cos2x}{2sinx}-2\dfrac{cos2x}{sin2x}=0$

\Leftrightarrow $\dfrac{cos2x}{2sinx}(1+\dfrac{cos2x}{cosx}+\dfrac{2}{cosx})=0$

\Leftrightarrow $\dfrac{cos2x}{2sinx}(\dfrac{cosx+2cos^2x-1+2}{cosx}=0$

\Leftrightarrow $cos2x=0$



Bài 1
PT \Leftrightarrow $2(1-cosx)-\sqrt{3}cos2x=1+1+cos(2x-\dfrac{3\pi}{2}$

\Leftrightarrow $-2cosx-\sqrt{3}cos2x=-sin2x$

\Leftrightarrow $\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=cosx$

\Leftrightarrow $cos(2x-\dfrac{5\pi}{6})=cosx$

\Leftrightarrow $\left[ \begin{array}{ll} x=\dfrac{5\pi}{6}+k2\pi &\\
x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}&
\end{array} \right.$

Xong bạn kẹp 2 họ nghiệm tìm được trên giữa khoảng $(0;\dfrac{\pi}{2}$ để tìm k nha (k thuộc Z)


Bài 3
ĐK $sin2x \not=0$

PT \Leftrightarrow $\dfrac{6sinxcosx-2sinx}{2sinxcos^2x}=2$

\Leftrightarrow $\dfrac{3cosx-1}{cos^2x}=2$ (Vì $sinx \not=0$)

\Leftrightarrow $2cos^2x-3cosx+1=0$

Tới đây đơn giản :rolleyes:
 
Last edited by a moderator:
D

demon311

1)

$4\sin^2 (\pi-\dfrac{ x}{2})-\sqrt{ 3}.\sin (\dfrac{ \pi}{2}-2x)=1+2\cos^2 (x-\\dfrac{ 3\pi}{4}) \\
4.\sin^2 \dfrac{ x}{2} - \sqrt{ 3}\cos 2x = 1+2\sin^2 (x-\dfrac{ \pi}{4}) = -[1-2\sin^2 (x-\dfrac{ \pi}{4})] +2 = 2-\sin 2x \\
\leftrightarrow \dfrac{ 1}{2}\sin 2x - \dfrac{\sqrt{ 3}}{2}\cos 2x = 1-2\sin^2 \dfrac{ x}{2} \\
\leftrightarrow \sin (2x-\dfrac{ \pi}{3})=\cos x \\
\leftrightarrow \cos (2x-\dfrac{ \pi}{6})=\cos x \\
\leftrightarrow \left[ \begin{array}{ll}
2x-\dfrac{\pi}{6}=x \\
2x-\dfrac{ \pi}{6}+x=0
\end{array} \right.
\leftrightarrow \left[ \begin{array}{ll}
x=\dfrac{ \pi}{6} \\
x=\dfrac{ \pi}{18}
\end{array} \right.$
 
Top Bottom