Giải PT:
[TEX]3sin(x - \frac{\pi}{3}) + 4sin(x +\frac{\pi}{6}) + 5sin(5x + \frac{\pi}{6}) = 0 [/TEX]
Do [TEX] sin(x +\frac{\pi}{6}) = cos(x - \frac{\pi}{3}) [/TEX]
[TEX] PT \Leftrightarrow 3sin(x - \frac{\pi}{3}) + 4cos(x - \frac{\pi}{3}) + 5sin(5x + \frac{\pi}{6}) = 0[/TEX]
[TEX]PT \Leftrightarrow \frac{3}{5}sin(x - \frac{\pi}{3}) + \frac{4}{5}cos(x - \frac{\pi}{3}) = sin(-5x -\frac{\pi}{6})[/TEX]
Gọi [TEX]\alpha[/TEX] là góc có [TEX]cos\alpha = \frac{3}{5} \Rightarrow sin\alpha = \frac{4}{5} \ , (\alpha \in (0;\frac{\pi}{2}))[/TEX]
[TEX]PT \Leftrightarrow cos\alpha.sin(x - \frac{\pi}{3}) + sin\alpha.cos(x - \frac{\pi}{3}) = sin(-5x -\frac{\pi}{6})[/TEX]
[TEX]PT \Leftrightarrow sin(x - \frac{\pi}{3} + \alpha) = sin(-5x -\frac{\pi}{6})[/TEX]
Đến đây cơ bản rùi, bạn giải nốt nhe.