Gợi ý:
ĐK:....
$$ \tan x+\cot x=4$$$$\Longleftrightarrow \tan^2x-4\tan x+1=0$$$$ \Longleftrightarrow \left[\begin{array}{1} \tan x= 2+\sqrt{3} \\ \tan x= 2-\sqrt{3} \end{array}\right.$$$$ \Longleftrightarrow \left[\begin{array}{1} x= \dfrac{5 \pi}{12}+k\pi \\ x= \dfrac{ \pi}{12}+k\pi \end{array}\right.$$ $\bullet$ $x= \dfrac{5 \pi}{12}+k\pi $ $(k \in Z)$mà $ x \in (0,2\pi)$ nên:
$$0< \dfrac{5 \pi}{12}+k\pi < 2\pi$$$$\Longleftrightarrow \dfrac{-5}{12}<k<\dfrac{1}{12}$$$$\Longleftrightarrow k=0,1$$ Vậy: $ x= \dfrac{5 \pi}{12}, \dfrac{17 \pi}{12}$
$\bullet$ Tương tự với trường hợp 2.